

Mechanical Properties of Solids

Q.No.1: The pressure that has to be applied at the ends of a steel wire of length 10 cm to keep its length constant when its temperature is raised by 100°C is

(For steel, Young's modulus is 2 \times 10¹¹ Nm⁻² and coefficient of thermal expansion is 1.1 \times 10⁻⁵ K⁻¹.)

- **A.** $2.2 \times 10^7 \text{ Pa}$
- **B.** $2.2 \times 10^6 \text{ Pa}$
- **C.** $2.2 \times 10^8 \text{ Pa}$
- **D.** $2.2 \times 10^9 \text{ Pa}$

Q.No.2: A pendulum made of a uniform wire of cross sectional area A has time period T. When an additional mass M is added to its bob, the time period changes to T_M . If the Young's modulus of the material of the wire is Y then $\frac{1}{Y}$ is equal to:

(g = gravitational acceleration)

JEE 2015

A.
$$\left[\left(\frac{T_M}{T} \right)^2 - 1 \right] \frac{A}{Mg}$$

B.
$$\left[\left(\frac{T_M}{T}\right)^2 - 1\right] \frac{Mg}{A}$$

C.
$$\left[1-\left(\frac{T_M}{T}\right)^2\right]\frac{A}{Mg}$$

D.
$$\left[1-\left(rac{T}{T_M}
ight)^2
ight]rac{A}{Mg}$$

Q.No.3: A pendulum clock loses 12 s a day if the temperature is 40 °C and gains 4 s a day if the temperature is 20 °C. The temperature at which the clock will show correct time, and the co-efficient of linear expansion (a) of the metal of the pendulum shaft are respectively:

JEE 2016

- **A.** $60^{\circ}C$; $a = 1.85 \times 10^{-4}/^{\circ}C$
- **B.** $30^{\circ}C$; $\alpha = 1.85 \times 10^{-3}/{^{\circ}C}$
- **C.** 55°C; $a = 1.85 \times 10^{-2}$ /°C
- **D.** $25^{\circ}C$; $a = 1.85 \times 10^{-5}/^{\circ}C$

Q.No.4: A man grows into a giant such that his linear dimensions increase by a factor of 9. Assuming that his density remains same, the stress in the leg will change by factor of:

JEE 2017

- **A.** $\frac{1}{81}$
- **B.** 9
- **C.** $\frac{1}{9}$
- **D.** 81

Q.No.5: A solid sphere of radius r made of a soft material of bulk modulus K is surrounded by a liquid in a cylindrical container. A massless piston of area a floats on the surface of the liquid, covering entire cross section of cylindrical container. When a mass m is placed on the surface of the piston to compress the liquid, the fractional decrement in the radius of the sphere, $\left(\frac{dr}{r}\right)$, is;

JEE 2018

- A. $\frac{\text{mg}}{3 \text{ Ka}}$
- $\mathbf{B.} \quad \frac{\mathrm{mg}}{\mathrm{Ka}}$
- C. $\frac{Ka}{mg}$
- $\mathbf{D.} \; \frac{\mathrm{Ka}}{3 \, \mathrm{mg}}$

Q.No.6: If speed (V), acceleration (A) and force (F) are considered as fundamental units, the dimension of Young's modulus will be : **JEE 2019**

- **A.** $V^{-2} A^2 F^{-2}$
- **B.** $V^{-2} A^2 F^2$
- **C.** $V^{-4} A^{-2} F$
- **D.** $V^{-4} A^2 F$

Q.No.7: A uniform metallic wire is elongated by 0.04 m when subjected to a

linear force F. The elongation, if its length and diameter is doubled and subjected to the same force will be _____cm. **JEE 2021**

Q.No.8: If Y, K and η are the values of Young's modulus, bulk modulus and modulus of rigidity of any material respectively. Choose the correct relation for these parameters. **JEE 2021**

A.
$$Y = \frac{9K\eta}{3K-\eta}N/m^2$$

B.
$$Y=rac{9K\eta}{2\eta+3K}N/m^2$$

C.
$$K = \frac{Y\eta}{9\eta-3Y}N/m^2$$

D.
$$\eta=rac{3\,\mathrm{YK}}{9\mathrm{K}+\mathrm{Y}}\mathrm{N}/\mathrm{m}^2$$

Q.No.9: The normal density of a material is ρ and its bulk modulus of elasticity is K. The magnitude of increase in density of material, when a pressure P is applied uniformly on all sides, will be : **JEE 2021**

- $\frac{\rho P}{K}$
- $\mathbf{B.} \quad \frac{\rho K}{P}$
- C. $\frac{K}{\rho P}$
- **D.** $\frac{PK}{\rho}$

Q.No.10: The length of metallic wire is I_1 when tension in it is T_1 . It is I_2 when the tension is T_2 . The original length of the wire will be **JEE 2021**

A.
$$\frac{T_1l_1-T_2l_2}{T_2-T_1}$$

B.
$$\frac{l_1+l_2}{2}$$

C.
$$\frac{T_2l_1+T_1l_2}{T_2+T_1}$$

D.
$$\frac{T_2l_1-T_1l_2}{T_2-T_1}$$